Trigonometriezh sferek

Eus Wikipedia
Mont da : merdeiñ, klask

An drigonometriezh sferek zo un teskad liammadennoù damheñvel ouzh re an drigonometriezh euklidian met gant kornioù ha pellderioù daveet war ur sferenn.

Ne c'heller ket implijout reolennoù boas an drigonometriezh euklidian ken ; da skouer ez eo brasoc'h somm kornioù un tric'horn lec'hiet war ur sferenn eget 180 derez hag dont a ra ar segmantoù eeunenn da vezañ gwaregoù kelc'hioù bras.

An tric'horn sferek[kemmañ | kemmañ ar vammenn]

Formulennoù kentañ[kemmañ | kemmañ ar vammenn]

tric'horn sferek
Sellet a reer ouzh a, b ha c evel ar c'hornioù is-stegnet war greizenn ar sferenn gant kostezioù an tric'horn

Kenemglevioù[kemmañ | kemmañ ar vammenn]

Bezet tri foent A, B ha C war ur sferenn evel taolennet gant ar figurenn amañ e-kichen, notet e vo a hirder kostez enep ar beg A hag α, a-wezhioù Â, korn (war gorreenn ar sferenn atav) an tric'horn er beg-se, hag evel se gant ar begoù all. Evit gwir e vo sellet ouzh an hirderioù a, b ha c evel kornioù el lodenn war-lerc'h, eleze ar c'hornioù is-stegnet war greizenn ar sferenn gant kostezioù an tric'horn (sellet ouzh an eil figurenn ; trohed ar sferenn eo ar c'horn 2π da skouer).

Formulenn ar c'hosinusoù ha liammadenn daouel[kemmañ | kemmañ ar vammenn]

Formulenn ar c'hosinusoù, roet gant François Viète e 1593 en e De Varorium[1] zo unan eus liammadennoù pouezusañ an drigonometriezh sferek. Liammañ a ra hirder ur c'hostez ouzh re an daou gostez all hag ar c'horn etrezo :

a zo arabat droukveskañ gant al liammadenn daouel, a gaver pa lakaer o foentoù polel e-lec'h an holl gelc'hioù bras el liammadenn-se :

Meur a zoare a zo da brouiñ formulenn ar c'hosiniusoù. Unan anezho a zo ezteuler e meur a zoare liesad skalarel ar vektorioù a ere O, kreizenn ar sferenn, ouzh ar poentoù A ha B e-barzh ar spas euklidian endro. Unan all a vo displeget dre ar munud amañ dindan.

En degouezh dibar pa vez skouer an tric'horn e C e kaver

 ;

klotañ a ra ar formulenn-se gant teorem Pythagoras evit an drigonometriezh sferek. Merzout a reer e kaver end-eeun en-dro teorem Pythagoras pa vez bihan a-walc'h an tric'horn evit lakaat o diorren bevennet a eil urzh e-lec'h ar c'hosinusoù.

Reiñ a ra tro formulenn ar c'hosinusoù da jediñ an hed etre daou boent A ha B war an Douar hervez o led hag o hed pergen. Evit se e lakaer ar poent C er pol norzh e doare ma vo a klokamant , led A, b klokamant , hini B, ha c an diferañs etre an hedoù . Kavout a reer war-eeun

.

Gallout a reer ivez skrivañ al liammadenn er stumm

Eus eztaolioù damheñvel evit cosα ha cosβ e teduer trede formulenn diaezez an drigonometriezh sferek (an div gentañ eo re ar c'hosinusoù hag ar sinusoù) :

Evit a sell ouzh al liammadenn daouel e c'heller he skrivañ

Formulenn ar sinusoù[kemmañ | kemmañ ar vammenn]

Merzout a reer diwar al liammadenn daouel meneget a-raok e vez dedermenet an tric'hornioù sferek gant o zri c'horn, ar pezh a zo disheñvel-bras diouzh degouezh an tric'hornioù euklidian (plaen). En tric'horn sferek ez eus un heñvelder peurglok (a zaouelder) etre hirder ar c'hostezioù hag ar c'hornioù er begoù. Skeudennet eo an heñvelder-se gant formulenn ar sinusoù :

pe c'hoazh

ar pezh a ranker kompren evel-henn : « emañ an tri c'hementad a gleiz er memes kenfeur gant an tri c'hementad a zehou (ar memes keñver etre daou gementad bennak a gleiz hag etre an daou gementad kenglot a zehou) ».